Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 511
Filtrar
1.
J Biol Chem ; 300(1): 105514, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042490

RESUMO

Non-muscle myosin 2A (NM2A), a widely expressed class 2 myosin, is important for organizing actin filaments in cells. It cycles between a compact inactive 10S state in which its regulatory light chain (RLC) is dephosphorylated and a filamentous state in which the myosin heads interact with actin, and the RLC is phosphorylated. Over 170 missense mutations in MYH9, the gene that encodes the NM2A heavy chain, have been described. These cause MYH9 disease, an autosomal-dominant disorder that leads to bleeding disorders, kidney disease, cataracts, and deafness. Approximately two-thirds of these mutations occur in the coiled-coil tail. These mutations could destabilize the 10S state and/or disrupt filament formation or both. To test this, we determined the effects of six specific mutations using multiple approaches, including circular dichroism to detect changes in secondary structure, negative stain electron microscopy to analyze 10S and filament formation in vitro, and imaging of GFP-NM2A in fixed and live cells to determine filament assembly and dynamics. Two mutations in D1424 (D1424G and D1424N) and V1516M strongly decrease 10S stability and have limited effects on filament formation in vitro. In contrast, mutations in D1447 and E1841K, decrease 10S stability less strongly but increase filament lengths in vitro. The dynamic behavior of all mutants was altered in cells. Thus, the positions of mutated residues and their roles in filament formation and 10S stabilization are key to understanding their contributions to NM2A in disease.


Assuntos
Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA , Humanos , Citoesqueleto/metabolismo , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Estrutura Secundária de Proteína
2.
J Thromb Haemost ; 22(4): 1179-1186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103735

RESUMO

BACKGROUND: The transcription factor GATA1 is an essential regulator of erythroid cell gene expression and maturation and is also relevant for platelet biogenesis. GATA1-related thrombocytopenia (GATA1-RT) is a rare X-linked inherited platelet disorder (IPD) characterized by macrothrombocytopenia and dyserythropoiesis. Enlarged platelet size, reduced platelet granularity, and noticeable red blood cell anisopoikilocytosis are characteristic but unspecific morphological findings in GATA1-RT. OBJECTIVES: To expand the investigation of platelet phenotype of patients with GATA1-RT by light- and immunofluorescence microscopy on a blood smear. METHODS: We assessed blood smears by light- and immunofluorescence microscopy after May-Grünwald Giemsa staining using a set of 13 primary antibodies against markers belonging to different platelet structures. Antibody binding was visualized by fluorescently labeled secondary antibodies. RESULTS: We investigated 12 individuals with genetically confirmed GATA1-RT from 8 unrelated families. While confirming the already known characteristic of platelet morphology (platelet macrocytosis and reduced expression of markers for α-granules), we also found aggregates of nonmuscular myosin heavy chain II A (NMMIIA) in the erythrocytes in all individuals (1-3 aggregates/cell, 1-3 µm diameter). By systematically reanalyzing blood smears from a cohort of patients with 19 different forms of IPD, we found similar NMMIIA aggregates in the red blood cells only in subjects with GFI1B-related thrombocytopenia (GFI1B-RT), the other major IPD featured by dyserythropoiesis. CONCLUSION: Aggregates of NMMIIA in the erythrocytes associate with GATA1-RT and GFI1B-RT and can facilitate their diagnosis on blood smears. This previously unreported finding might represent a novel marker of dyserythropoiesis assessable in peripheral blood.


Assuntos
Anemia , Fator de Transcrição GATA1 , Miosina não Muscular Tipo IIA , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Trombocitopenia , Humanos , Plaquetas/metabolismo , Eritrócitos , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética
3.
J Biol Chem ; 300(1): 105565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103642

RESUMO

The biochemical SRX (super-relaxed) state of myosin has been defined as a low ATPase activity state. This state can conserve energy when the myosin is not recruited for muscle contraction. The SRX state has been correlated with a structurally defined ordered (versus disordered) state of muscle thick filaments. The two states may be linked via a common interacting head motif (IHM) where the two heads of heavy meromyosin (HMM), or myosin, fold back onto each other and form additional contacts with S2 and the thick filament. Experimental observations of the SRX, IHM, and the ordered form of thick filaments, however, do not always agree, and result in a series of unresolved paradoxes. To address these paradoxes, we have reexamined the biochemical measurements of the SRX state for porcine cardiac HMM. In our hands, the commonly employed mantATP displacement assay was unable to quantify the population of the SRX state with all data fitting very well by a single exponential. We further show that mavacamten inhibits the basal ATPases of both porcine ventricle HMM and S1 (Ki, 0.32 and 1.76 µM respectively) while dATP activates HMM cooperatively without any evidence of an SRX state. A combination of our experimental observations and theories suggests that the displacement of mantATP in purified proteins is not a reliable assay to quantify the SRX population. This means that while the structurally defined IHM and ordered thick filaments clearly exist, great care must be employed when using the mantATP displacement assay.


Assuntos
Trifosfato de Adenosina , Ensaios Enzimáticos , Miosina não Muscular Tipo IIA , Suínos , ortoaminobenzoatos , Animais , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Benzilaminas/farmacologia , Ensaios Enzimáticos/métodos , Ensaios Enzimáticos/normas , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Ventrículos do Coração/metabolismo , Contração Miocárdica , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , ortoaminobenzoatos/metabolismo , Uracila/análogos & derivados , Uracila/farmacologia
4.
Cell Rep ; 42(10): 113213, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804510

RESUMO

The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity. Pharmacological inhibition of myosin IIA effector molecules with blebbistatin (BLEB) or the RhoA upstream regulator of this pathway with simvastatin (SIM) restored tumor-intrinsic cGAS-mediated cGAMP production and enhanced antitumor immunity. Our work identifies that ECM stiffness is an important biophysical cue to regulate tumor immunogenicity via the ROCK-myosin IIA-F-actin axis and that inhibiting this mechanosignaling pathway could boost immunotherapeutic efficacy for effective solid tumor treatment.


Assuntos
Mecanotransdução Celular , Nucleotidiltransferases , Actinas/metabolismo , GMP Cíclico , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Nucleotidiltransferases/metabolismo , Humanos , Animais , Camundongos
5.
Cell Adh Migr ; 17(1): 1-23, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37743653

RESUMO

E-cadherin-catenin complex together with the cytoskeleton, builds the core of Adherens junctions (AJs). It has been reported that Scribble stabilizes the coupling of E-cadherin with catenins promoting epithelial cell adhesion, but the mechanism remains unknown. We show that Scribble, Lgl1, and NMII-A reside in a complex with E-cadherin-catenin complex. Depletion of either Scribble or Lgl1 disrupts the localization of E-cadherin-catenin complex to AJs. aPKCζ phosphorylation of Lgl1 regulates AJ localization of Lgl1 and E-cadherin-catenin complexes. Both Scribble and Lgl1 regulate the activation and recruitment of NMII-A at AJs. Finally, Scribble and Lgl1 are downregulated by TGFß-induced EMT, and their re-expression during EMT impedes its progression. Our results provide insight into the mechanism regulating AJ integrity by Scribble, Lgl1, and NMII-A.


Assuntos
Miosina não Muscular Tipo IIA , beta Catenina , Caderinas , Cateninas , Membrana Celular
6.
Am J Chin Med ; 51(7): 1879-1904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650421

RESUMO

Ruscogenin (RUS), a major effective steroidal sapogenin derived from Ophiopogon japonicas, has been reported to alleviate myocardial ischemia (MI), but its cardioprotective mechanism is still not completely clear. In this study, we observed that RUS markedly reduced MI-induced myocardial injury, as evidenced by notable reductions in infarct size, improvement in biochemical markers, alleviation of cardiac pathology, amelioration of mitochondrial damage, and inhibition of myocardial apoptosis. Moreover, RUS notably suppressed oxygen-glucose deprivation (OGD)-triggered cell injury and apoptosis. Notably, RUS demonstrated a considerable decrease of the interaction between myosin IIA and F-actin, along with the restoration of mitochondrial fusion and fission balance. We further confirmed that the effects of RUS on MI were mediated by myosin IIA using siRNA and overexpression techniques. The inhibition of myosin IIA resulted in a significant improvement of mitochondrial fusion and fission imbalance, while simultaneously counteracting the beneficial effects of RUS. By contrast, overexpression of myosin IIA aggravated the imbalance between mitochondrial fusion and fission and partially weakened the protection of RUS. These findings suggest that myosin IIA is essential or even a key functional protein in the cardioprotection of RUS. Overall, our results have elucidated an undiscovered mechanism involving myosin IIA-dependent mitochondrial fusion and fission balance for treating MI. Furthermore, our study has uncovered a novel mechanism underlying the protective effects of RUS.


Assuntos
Isquemia Miocárdica , Miosina não Muscular Tipo IIA , Espirostanos , Humanos , Dinâmica Mitocondrial , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/genética , Espirostanos/farmacologia , Espirostanos/uso terapêutico , Apoptose/genética
7.
J Biol Chem ; 299(9): 105143, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562567

RESUMO

Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.


Assuntos
Processamento Alternativo , Encéfalo , Miosina não Muscular Tipo IIA , Humanos , Actinas/metabolismo , Encéfalo/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ritmo Circadiano , ATPase de Ca(2+) e Mg(2+)/metabolismo , Especificidade de Órgãos
8.
Exp Parasitol ; 251: 108565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331576

RESUMO

Toxoplasmosis is a serious parasitic infection and novel therapeutic options are highly demanded to effectively eliminate it. In current study, Toxoplasma gondii myosin A, C and F genes were knocked down using small interference RNA (siRNA) method and the parasite survival and virulence was evaluated in vitro and in vivo. The parasites were transfected with specific siRNA, virtually designed for myosin mRNAs, and co-cultured with human foreskin fibroblasts. The transfection rate and the viability of the transfected parasites were measured using flow cytometry and methyl thiazole tetrazolium (MTT) assays, respectively. Finally, the survival of BALB/c mice infected with siRNAs-transfected T. gondii was assessed. It was demonstrated that a transfection rate of 75.4% existed for siRNAs, resulting in 70% (P = 0.032), 80.6% (P = 0.017) and 85.5% (P = 0.013) gene suppression for myosin A, C and F in affected parasites, respectively, which was subsequently confirmed by Western blot analysis. Moreover, lower parasite viability was observed in those with knocked down myosin C with 80% (P = 0.0001), followed by 86.15% (P = 0.004) for myosin F and 92.3% (P = 0.083) for myosin A. Considerably higher mouse survival (about 40 h) was, also, demonstrated in mice challenged with myosin siRNA-transfected T. gondii, in comparison with control group challenged with wild-type parasites. In conclusion, myosin proteins knock down proposes a promising therapeutic strategy to combat toxoplasmosis.


Assuntos
Miosina não Muscular Tipo IIA , Parasitos , Toxoplasma , Toxoplasmose , Humanos , Animais , Camundongos , Parasitos/genética , Parasitos/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Virulência/genética , Toxoplasmose/parasitologia , RNA Interferente Pequeno , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
9.
Nat Commun ; 14(1): 3463, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308472

RESUMO

Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Miosina não Muscular Tipo IIA , Plasmodium falciparum , Actinas , Bioensaio
10.
ACS Nano ; 17(10): 9155-9166, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37171255

RESUMO

Spike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells. We discovered that nanospikes at the nanoparticle regulated myosin IIA recruitment at the cell membrane during cellular uptake, thereby enhancing cellular uptake efficiency, as revealed by dual-modality (plasmonic and fluorescence) imaging. Furthermore, the spiky nanoparticles also exhibited facilitated endocytosis dynamics, as revealed by real-time dark-field microscopy (DFM) imaging and colorimetry-based classification algorithms. These findings highlight the crucial role of the spiky morphology in regulating the intracellular fate of nanoparticles, which may shed light on engineering theranostic nanocarriers.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Miosina não Muscular Tipo IIA , Miosina não Muscular Tipo IIA/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas/química , Transporte Biológico , Membrana Celular/metabolismo , Endocitose
11.
PLoS One ; 18(5): e0285251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200287

RESUMO

HER2 is over-expressed in around 15% to 20% of breast cancers. HER3 plays a critical role in HER2 mediated tumorigenesis. Increased HER3 transcription and protein levels occur upon inhibition of HER2. We aimed to identify proteins that bound to HER3 upon inhibition of the HER family with the pan-HER inhibitor neratinib in HER2+ breast cancer cells. Immunoprecipitation of HER3 followed by mass spectrometry experiments found non-muscle myosin IIA (NMIIA) increased upon neratinib treatment relative to vehicle DMSO treatment. MYH9 is the gene that encodes for the heavy chain of NMIIA. Breast cancer patients with high MYH9 were significantly associated with a shorter disease specific survival compared to patients with low MYH9 expression from the METABRIC cohort of patients. In addition, high MYH9 expression was associated with HER2+ tumors from this cohort. Immunoblots of whole cell lysates of BT474 and MDA-MB-453 HER2+ breast cancer cells demonstrated elevated HER3 and NMIIA protein levels upon neratinib treatment for 24 hours. To examine the role of NMIIA in HER2+ breast cancer, we modulated NMIIA levels in BT474 and MDA-MB-453 cells using doxycycline inducible shRNA targeting MYH9. MYH9 knockdown reduces HER3 protein levels and concomitant reduction in downstream P-Akt. In addition, loss of MYH9 suppresses cell growth, proliferation, migration, and invasion. Our data reveals that NMIIA regulates HER3 and loss of NMIIA reduces HER2+ breast cancer growth.


Assuntos
Neoplasias da Mama , Miosina não Muscular Tipo IIA , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Miosina não Muscular Tipo IIA/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo
12.
Mol Biol Cell ; 34(7): ar71, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074945

RESUMO

Nonmuscle myosin IIB (NMIIB) is considered a primary force generator during cell motility. Yet many cell types, including motile cells, do not necessarily express NMIIB. Given the potential of cell engineering for the next wave of technologies, adding back NMIIB could be a strategy for creating supercells with strategically altered cell morphology and motility. However, we wondered what unforeseen consequences could arise from such an approach. Here, we leveraged pancreatic cancer cells, which do not express NMIIB. We generated a series of cells where we added back NMIIB and strategic mutants that increase the ADP-bound time or alter the phosphorylation control of bipolar filament assembly. We characterized the cellular phenotypes and conducted RNA-seq analysis. The addition of NMIIB and the different mutants all have specific consequences for cell morphology, metabolism, cortical tension, mechanoresponsiveness, and gene expression. Major modes of ATP production are shifted, including alterations in spare respiratory capacity and the dependence on glycolysis or oxidative phosphorylation. Several metabolic and growth pathways undergo significant changes in gene expression. This work demonstrates that NMIIB is highly integrated with many cellular systems and simple cell engineering has a profound impact that extends beyond the primary contractile activity presumably being added to the cells.


Assuntos
Miosina não Muscular Tipo IIA , Miosina não Muscular Tipo IIB , Miosina não Muscular Tipo IIB/metabolismo , Reprogramação Celular , Citoesqueleto/metabolismo , Contração Muscular , Fosforilação , Miosina não Muscular Tipo IIA/metabolismo
13.
Invest Ophthalmol Vis Sci ; 64(4): 20, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37070941

RESUMO

Purpose: Epithelial cells in the equatorial region of the ocular lens undergo a remarkable transition from randomly packed cells into precisely aligned and hexagon-shaped cells organized into meridional rows. We investigated the function of nonmuscle myosin IIA (encoded by Myh9) in regulating equatorial epithelial cell alignment to form meridional rows during secondary fiber cell morphogenesis. Methods: We used genetic knock-in mice to study a common human Myh9 mutation, E1841K, in the rod domain. The E1841K mutation disrupts bipolar filament assembly. Lens shape, clarity, and stiffness were evaluated, and Western blots were used to determine the level of normal and mutant myosins. Cryosections and lens whole mounts were stained and imaged by confocal microscopy to investigate cell shape and organization. Results: We observed no obvious changes in lens size, shape, and biomechanical properties (stiffness and resilience) between the control and nonmuscle myosin IIA-E1841K mutant mice at 2 months of age. Surprisingly, we found misalignment and disorder of fiber cells in heterozygous and homozygous mutant lenses. Further analysis revealed misshapen equatorial epithelial cells that cause disorientation of the meridional rows before fiber cell differentiation in homozygous mutant lenses. Conclusions: Our data indicate that nonmuscle myosin IIA bipolar filament assembly is required for the precise alignment of the meridional rows at the lens equator and that the organization of lens fiber cells depends on the proper patterning of meridional row epithelial cells. These data also suggest that lens fiber cell organization and a hexagonal shape are not required for normal lens size, shape transparency, or biomechanical properties.


Assuntos
Cristalino , Miosina não Muscular Tipo IIA , Camundongos , Animais , Humanos , Miosina não Muscular Tipo IIA/genética , Diferenciação Celular/fisiologia , Células Epiteliais , Mutação
14.
Acta Biomater ; 159: 38-48, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708850

RESUMO

Mechanical heterogeneity has been recognized as an important role in mediating collective cell migration, yet the related mechanism has not been elucidated. Herein, we fabricate heterogeneous stiffness gradients by leveraging microelastically-patterned hydrogels with varying periodic distance. We observe that a decrease in the periodic distance of the mechanical heterogeneity is accompanied by an overall increase in the velocity and directionality of the migrating monolayer. Moreover, inhibition of ROCK- and myosin ⅡA- but not Rac1-mediated contraction reduces monolayer migration on the mechanically heterogeneous substrates. Furthermore, we find that F-actin and myosin ⅡA form purse-string at the leading edge on the mechanically heterogeneous substrates. Together, these findings not only show that the orientational cell-cell contraction promotes collective cell migration under the mechanical heterogeneity, but also demonstrate that the mechanosensation arising from large-scale cell-cell interactions through purse-string formation mediated cell-cell orientational contraction can feed back to regulate the reorganization of epithelial tissues. STATEMENT OF SIGNIFICANCE: By detecting the links between heterogenous rigidity and collective cell migration behavior at the molecular level, we reveal that collective cell migration in the mechanical heterogeneity is driven by ROCK- and myosin-ⅡA-dependent cytoskeletal tension. We confirm that cytoskeletal tension across the epithelial tissue is holistically linked through F-actin and myosin-ⅡA, which cooperate to form purse-string structures for modulating collective tissue behavior on the exogenous matrix with mechanical heterogeneity. Mechanical heterogeneity initiates tissue growth, remodelling, and morphogenesis by orientating cell contractility. Therefore, tensional homeostasis across large-scale cell interactions appears to be necessary and sufficient to trigger collective tissue behavior. Overall, these findings shed light on the role of mechanical heterogeneity in tissue microenvironment for reorganization and morphogenesis.


Assuntos
Actinas , Miosina não Muscular Tipo IIA , Epitélio , Movimento Celular/fisiologia , Citoesqueleto de Actina
15.
Virol Sin ; 38(1): 128-141, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509386

RESUMO

Influenza A virus (IAV), responsible for seasonal epidemics and recurring pandemics, represents a global threat to public health. Given the risk of a potential IAV pandemic, it is increasingly important to better understand virus-host interactions and develop new anti-viral strategies. Here, we reported nonmuscle myosin IIA (MYH9)-mediated regulation of IAV infection. MYH9 depletion caused a profound inhibition of IAV infection by reducing viral attachment and internalization in human lung epithelial cells. Surprisingly, overexpression of MYH9 also led to a significant reduction in viral productive infection. Interestingly, overexpression of MYH9 retained viral attachment, internalization, or uncoating, but suppressed the viral ribonucleoprotein (vRNP) activity in a minigenome system. Further analyses found that excess MYH9 might interrupt the formation of vRNP by interacting with the viral nucleoprotein (NP) and result in the reduction of the completed vRNP in the nucleus, thereby inhibiting subsequent viral RNA transcription and replication. Together, we discovered that MYH9 can interact with IAV NP protein and engage in the regulation of vRNP complexes, thereby involving viral replication. These findings enlighten new mechanistic insights into the complicated interface of host-IAV interactions, ultimately making it an attractive target for the generation of antiviral drugs.


Assuntos
Vírus da Influenza A , Influenza Humana , Miosina não Muscular Tipo IIA , Humanos , Interações Hospedeiro-Patógeno , Vírus da Influenza A/genética , Influenza Humana/genética , Pulmão , Miosina não Muscular Tipo IIA/metabolismo , Nucleoproteínas , Nucleotidiltransferases/metabolismo , Internalização do Vírus , Replicação Viral/fisiologia
16.
Front Immunol ; 13: 1038349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341418

RESUMO

Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.


Assuntos
Helicobacter pylori , Transtornos Leucocíticos , Miosina não Muscular Tipo IIA , Humanos , Quimiotaxia , Neutrófilos/metabolismo , Helicobacter pylori/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Transtornos Leucocíticos/metabolismo , Actinas/metabolismo , Cadeias Leves de Miosina/metabolismo
17.
BMC Neurol ; 22(1): 428, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380287

RESUMO

BACKGROUND: Myosin heavy chain (MyHC) isoforms define the three major muscle fiber types in human extremity muscles. Slow beta/cardiac MyHC (MYH7) is expressed in type 1 muscle fibers. MyHC IIa (MYH2) and MyHC IIx (MYH1) are expressed in type 2A and 2B fibers, respectively. Whereas recessive MyHC IIa myopathy has been described in many cases, myopathy caused by dominant MYH2 variants is rare and has been described with clinical manifestations and muscle pathology in only one family and two sporadic cases. METHODS: We investigated three patients from one family with a dominantly inherited myopathy by clinical investigation, whole-genome sequencing, muscle biopsy, and magnetic resonance imaging (MRI). RESULTS: Three siblings, one woman and two men now 54, 56 and 66 years old, had experienced muscle weakness initially affecting the lower limbs from young adulthood. They have now generalized proximal muscle weakness affecting ambulation, but no ophthalmoplegia. Whole-genome sequencing identified a heterozygous MYH2 variant, segregating with the disease in the three affected individuals: c.5673 + 1G > C. Analysis of cDNA confirmed the predicted splicing defect with skipping of exon 39 and loss of residues 1860-1891 in the distal tail of the MyHC IIa, largely overlapping with the filament assembly region (aa1877-1905). Muscle biopsy in two of the affected individuals showed prominent type 1 muscle fiber predominance with only a few very small, scattered type 2A fibers and no type 2B fibers. The small type 2A fibers were frequently hybrid fibers with either slow MyHC or embryonic MyHC expression. The type 1 fibers showed variation in fiber size, internal nuclei and some structural alterations. There was fatty infiltration, which was also demonstrated by MRI. CONCLUSION: Dominantly inherited MyHC IIa myopathy due to a splice defect causing loss of amino acids 1860-1891 in the distal tail of the MyHC IIa protein including part of the assembly competence domain. The myopathy is manifesting with slowly progressive muscle weakness without overt ophthalmoplegia and markedly reduced number and size of type 2 fibers.


Assuntos
Doenças Musculares , Miosina não Muscular Tipo IIA , Oftalmoplegia , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Debilidade Muscular , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Doenças Musculares/genética , Doenças Musculares/patologia , Cadeias Pesadas de Miosina/genética , Mutação , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia
18.
Front Cell Infect Microbiol ; 12: 924424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250062

RESUMO

Post-translational modifications (PTMs) including phosphorylation and palmitoylation have emerged as crucial biomolecular events that govern many cellular processes including functioning of motility- and invasion-associated proteins during Plasmodium falciparum invasion. However, no study has ever focused on understanding the possibility of a crosstalk between these two molecular events and its direct impact on preinvasion- and invasion-associated protein-protein interaction (PPI) network-based molecular machinery. Here, we used an integrated in silico analysis to enrich two different catalogues of proteins: (i) the first group defines the cumulative pool of phosphorylated and palmitoylated proteins, and (ii) the second group represents a common set of proteins predicted to have both phosphorylation and palmitoylation. Subsequent PPI analysis identified an important protein cluster comprising myosin A tail interacting protein (MTIP) as one of the hub proteins of the glideosome motor complex in P. falciparum, predicted to have dual modification with the possibility of a crosstalk between the same. Our findings suggested that blocking palmitoylation led to reduced phosphorylation and blocking phosphorylation led to abrogated palmitoylation of MTIP. As a result of the crosstalk between these biomolecular events, MTIP's interaction with myosin A was found to be abrogated. Next, the crosstalk between phosphorylation and palmitoylation was confirmed at a global proteome level by click chemistry and the phenotypic effect of this crosstalk was observed via synergistic inhibition in P. falciparum invasion using checkerboard assay and isobologram method. Overall, our findings revealed, for the first time, an interdependence between two PTM types, their possible crosstalk, and its direct impact on MTIP-mediated invasion via glideosome assembly protein myosin A in P. falciparum. These insights can be exploited for futuristic drug discovery platforms targeting parasite molecular machinery for developing novel antimalarial therapeutics.


Assuntos
Antimaláricos , Proteínas do Citoesqueleto/metabolismo , Malária Falciparum , Proteínas de Membrana/metabolismo , Miosina não Muscular Tipo IIA , Humanos , Lipoilação , Malária Falciparum/parasitologia , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , Fosforilação , Plasmodium falciparum , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo
19.
Physiol Rep ; 10(18): e15370, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117313

RESUMO

Proteinuria is a major manifestation of kidney disease, reflecting injuries of glomerular podocytes. Actin cytoskeleton plays a pivotal role in stabilizing the foot processes of podocytes against the hydrostatic pressure of filtration. Calponin is an actin associated protein that regulates mechanical tension-related cytoskeleton functions and its role in podocytes has not been established. Here we studied the kidney phenotypes of calponin isoform 2 knockout (KO) mice. Urine samples were examined to quantify the ratio of albumin and creatinine. Kidney tissue samples were collected for histology and ultrastructural studies. A mouse podocyte cell line (E11) was used to study the expression and cellular localization of calponin 2. In comparison with wild-type (WT) controls, calponin 2 KO mice showed age-progressive high proteinuria and degeneration of renal glomeruli. High levels of calponin 2 are expressed in E11 podocytes and colocalized with actin stress fibers, tropomyosin and myosin IIA. Electron microscopy showed that aging calponin 2 KO mice had effacement of the podocyte foot processes and increased thickness of the glomerular basement membrane as compared to that of WT control. The findings demonstrate that deletion of calponin 2 aggravates age-progressive degeneration of the glomerular structure and function as filtration barrier. The critical role of calponin 2 in podocytes suggests a molecular target for understanding the pathogenesis of proteinuria and therapeutic development.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteinúria/metabolismo , Actinas/metabolismo , Albuminas , Animais , Proteínas de Ligação ao Cálcio , Creatinina , Camundongos , Camundongos Knockout , Miosina não Muscular Tipo IIA , Tropomiosina
20.
EMBO Rep ; 23(7): e54857, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506479

RESUMO

Malaria-causing parasites rely on an actin-myosin-based motor for the invasion of different host cells and tissue traversal in mosquitoes and vertebrates. The unusual myosin A of Plasmodium spp. has a unique N-terminal extension, which is important for red blood cell invasion by P. falciparum merozoites in vitro and harbors a phosphorylation site at serine 19. Here, using the rodent-infecting P. berghei we show that phosphorylation of serine 19 increases ookinete but not sporozoite motility and is essential for efficient transmission of Plasmodium by mosquitoes as S19A mutants show defects in mosquito salivary gland entry. S19A along with E6R mutations slow ookinetes and salivary gland sporozoites in both 2D and 3D environments. In contrast to data from purified proteins, both E6R and S19D mutations lower force generation by sporozoites. Our data show that the phosphorylation cycle of S19 influences parasite migration and force generation and is critical for optimal migration of parasites during transmission from and to the mosquito.


Assuntos
Culicidae , Malária Falciparum , Miosina não Muscular Tipo IIA , Animais , Miosina não Muscular Tipo IIA/metabolismo , Fosforilação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Serina/metabolismo , Esporozoítos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...